84 research outputs found

    Degrees of the finite model property: the antidichotomy theorem

    Full text link
    A classic result in modal logic, known as the Blok Dichotomy Theorem, states that the degree of incompleteness of a normal extension of the basic modal logic K\sf K is 11 or 2ℵ02^{\aleph_0}. It is a long-standing open problem whether Blok Dichotomy holds for normal extensions of other prominent modal logics (such as S4\sf S4 or K4\sf K4) or for extensions of the intuitionistic propositional calculus IPC\mathsf{IPC}. In this paper, we introduce the notion of the degree of finite model property (fmp), which is a natural variation of the degree of incompleteness. It is a consequence of Blok Dichotomy Theorem that the degree of fmp of a normal extension of K\sf K remains 11 or 2ℵ02^{\aleph_0}. In contrast, our main result establishes the following Antidichotomy Theorem for the degree of fmp for extensions of IPC\mathsf{IPC}: each nonzero cardinal κ\kappa such that κ≤ℵ0\kappa \leq \aleph_0 or κ=2ℵ0\kappa = 2^{\aleph_0} is realized as the degree of fmp of some extension of IPC\mathsf{IPC}. We then use the Blok-Esakia theorem to establish the same Antidichotomy Theorem for normal extensions of S4\sf S4 and K4\sf K4

    The Kuznetsov-GerÄŤiu and Rieger-Nishimura logics

    Get PDF
    We give a systematic method of constructing extensions of the Kuznetsov-Gerčiu logic KG without the finite model property (fmp for short), and show that there are continuum many such. We also introduce a new technique of gluing of cyclic intuitionistic descriptive frames and give a new simple proof of Gerčiu’s result [9, 8] that all extensions of the Rieger-Nishimura logic RN have the fmp. Moreover, we show that each extension of RN has the poly-size model property, thus improving on [9]. Furthermore, for each function f: \omega -> \omega, we construct an extension Lf of KG such that Lf has the fmp, but does not have the f-size model property. We also give a new simple proof of another result of Gerčiu [9] characterizing the only extension of KG that bounds the fmp for extensions of KG. We conclude the paper by proving that RN.KC = RN + (¬p \vee ¬¬p) is the only pre-locally tabular extension of KG, introduce the internal depth of an extension L of RN, and show that L is locally tabular if and only if the internal depth of L is finite

    On the structure of modal and tense operators on a boolean algebra

    Full text link
    We study the poset NO(B) of necessity operators on a boolean algebra B. We show that NO(B) is a meet-semilattice that need not be distributive. However, when B is complete, NO(B) is necessarily a frame, which is spatial iff B is atomic. In that case, NO(B) is a locally Stone frame. Dual results hold for the poset PO(B) of possibility operators. We also obtain similar results for the posets TNO(B) and TPO(B) of tense necessity and possibility operators on B. Our main tool is Jonsson-Tarski duality, by which such operators correspond to continuous and interior relations on the Stone space of B.Comment: 18 page

    Bitopological Duality for Distributive Lattices and Heyting Algebras

    Get PDF
    We introduce pairwise Stone spaces as a natural bitopological generalization of Stone spaces—the duals of Boolean algebras—and show that they are exactly the bitopological duals of bounded distributive lattices. The category PStone of pairwise Stone spaces is isomorphic to the category Spec of spectral spaces and to the category Pries of Priestley spaces. In fact, the isomorphism of Spec and Pries is most naturally seen through PStone by first establishing that Pries is isomorphic to PStone, and then showing that PStone is isomorphic to Spec. We provide the bitopological and spectral descriptions of many algebraic concepts important for the study of distributive lattices. We also give new bitopological and spectral dualities for Heyting algebras, co-Heyting algebras, and bi-Heyting algebras, thus providing two new alternatives of Esakia’s duality

    Idempotent generated algebras and Boolean powers of commutative rings

    Full text link
    A Boolean power S of a commutative ring R has the structure of a commutative R-algebra, and with respect to this structure, each element of S can be written uniquely as an R-linear combination of orthogonal idempotents so that the sum of the idempotents is 1 and their coefficients are distinct. In order to formalize this decomposition property, we introduce the concept of a Specker R-algebra, and we prove that the Boolean powers of R are up to isomorphism precisely the Specker R-algebras. We also show that these algebras are characterized in terms of a functorial construction having roots in the work of Bergman and Rota. When R is indecomposable, we prove that S is a Specker R-algebra iff S is a projective R-module, thus strengthening a theorem of Bergman, and when R is a domain, we show that S is a Specker R-algebra iff S is a torsion-free R-module. For an indecomposable R, we prove that the category of Specker R-algebras is equivalent to the category of Boolean algebras, and hence is dually equivalent to the category of Stone spaces. In addition, when R is a domain, we show that the category of Baer Specker R-algebras is equivalent to the category of complete Boolean algebras, and hence is dually equivalent to the category of extremally disconnected compact Hausdorff spaces. For a totally ordered R, we prove that there is a unique partial order on a Specker R-algebra S for which it is an f-algebra over R, and show that S is equivalent to the R-algebra of piecewise constant continuous functions from a Stone space X to R equipped with the interval topology.Comment: 18 page

    De Vries powers: a generalization of Boolean powers for compact Hausdorff spaces

    Full text link
    We generalize the Boolean power construction to the setting of compact Hausdorff spaces. This is done by replacing Boolean algebras with de Vries algebras (complete Boolean algebras enriched with proximity) and Stone duality with de Vries duality. For a compact Hausdorff space XX and a totally ordered algebra AA, we introduce the concept of a finitely valued normal function f:X→Af:X\to A. We show that the operations of AA lift to the set FN(X,A)FN(X,A) of all finitely valued normal functions, and that there is a canonical proximity relation ≺\prec on FN(X,A)FN(X,A). This gives rise to the de Vries power construction, which when restricted to Stone spaces, yields the Boolean power construction. We prove that de Vries powers of a totally ordered integral domain AA are axiomatized as proximity Baer Specker AA-algebras, those pairs (S,≺)(S,\prec), where SS is a torsion-free AA-algebra generated by its idempotents that is a Baer ring, and ≺\prec is a proximity relation on SS. We introduce the category of proximity Baer Specker AA-algebras and proximity morphisms between them, and prove that this category is dually equivalent to the category of compact Hausdorff spaces and continuous maps. This provides an analogue of de Vries duality for proximity Baer Specker AA-algebras.Comment: 34 page

    Ideal and MacNeille completions of subordination algebras

    Full text link
    S5\mathsf{S5}-subordination algebras were recently introduced as a generalization of de Vries algebras, and it was proved that the category SubS5S\mathsf{SubS5^S} of S5\mathsf{S5}-subordination algebras and compatible subordination relations between them is equivalent to the category of compact Hausdorff spaces and closed relations. We generalize MacNeille completions of boolean algebras to the setting of S5\mathsf{S5}-subordination algebras, and utilize the relational nature of the morphisms in SubS5S\mathsf{SubS5^S} to prove that the MacNeille completion functor establishes an equivalence between SubS5S\mathsf{SubS5^S} and its full subcategory consisting of de Vries algebras. We also generalize ideal completions of boolean algebras to the setting of S5\mathsf{S5}-subordination algebras and prove that the ideal completion functor establishes a dual equivalence between SubS5S\mathsf{SubS5^S} and the category of compact regular frames and preframe homomorphisms. Our results are choice-free and provide further insight into Stone-like dualities for compact Hausdorff spaces with various morphisms between them. In particular, we show how they restrict to the wide subcategories of SubS5S\mathsf{SubS5^S} corresponding to continuous relations and continuous functions between compact Hausdorff spaces

    A generalization of de Vries duality to closed relations between compact Hausdorff spaces

    Get PDF
    Stone duality generalizes to an equivalence between the categories StoneR of Stone spaces and closed relations and BAS of boolean algebras and subordination relations. Splitting equivalences in StoneR yields a category that is equivalent to the category KHausR of compact Hausdorff spaces and closed relations. Similarly, splitting equivalences in BAS yields a category that is equivalent to the category De VS of de Vries algebras and compatible subordination relations. Applying the machinery of allegories then yields that KHausR is equivalent to De VS, thus resolving a problem recently raised in the literature.The equivalence between KHausR and De VS further restricts to an equivalence between the category KHausR of compact Hausdorff spaces and continuous functions and the wide subcategory De VF of De VS whose morphisms satisfy additional conditions. This yields an alternative to de Vries duality. One advantage of this approach is that composition of morphisms is usual relation composition
    • …
    corecore